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Analysis of inelastic x-ray scattering spectra of low-temperature water
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We analyze a set of high-resolution inelastic x-ray scattefiXxg) spectra from HO measured af
=259, 273, and 294 K using two different phenomenological models. Model |, called the “dynamic cage
model,” combines the short time in-cage dynamics described by a generalized Enskog kinetic theory with a
long-time cage relaxation dynamics described by an alpha relaxation. This model is appropriate for super-
cooled water where the cage effect is dominant and the existence of an alpha relaxation is evident from
molecular-dynamic¢éMD) simulation data of extended simple point cha(§&C/B model water. Model Il is
essentially a generalized hydrodynamic theory called the “three effective eigenmode theory” by de Schepper
et al.[1]. This model is appropriate for normal liquid water where the cage effect is less prominent and there
is no evidence of the alpha relaxation from the MD data. We use the model | to analyze IXS data at
=259 K (supercooled watgrWe successfully extract the Debye-Waller factor, the cage relaxation time from
the long-time dynamics, and the dispersion relation of high-frequency sound from the short time dynamics. We
then use the model Il to analyze IXS data at all three temperatures, from which we are able to extract the
relaxation rate of the central mode and the damping of the sound mode as well as the dispersion relation for the
high-frequency sound. It turns out that the dispersion relations extracted from the two models at their respec-
tive temperatures agree with each other giving the high-frequency sound speed af32@0®/s. This is to be
compared with a slightly higher value reported previously, 32820 m/s, by analyzing similar IXS data with
a phenomenological-damped harmonic oscillator md@él This latter model has traditionally been used
exclusively for the analysis of inelastic scattering spectra of waterk¥dependent sound damping and central
mode relaxation rate extracted from our model analyses are compared with the known values in the hydrody-
namic limit.

PACS numbdps): 61.20.Ja, 64.70.Pf

I. INTRODUCTION rameters governing the relaxation process and the sound
propagation.
Stimulated by a pioneering molecular-dynami#D) So far, these coherent INS and IXS data have been ana-

simulation made in 1974, which predicted the existence of dyzed by assuming that the dynamic structure fa§d, o),
high-frequency propagating souf8] in water, and a subse- expressing the power spectral density of the density fluctua-
quent experimental verification of it by an inelastic neutrontion of the center of mass, consists of a central Lorentzian
scattering INS) spectroscopj4] in 1985, the physical origin peak and two symmetrically energy shifted side peaks repre-
of the high-frequency sound in water has since been dissented by the spectral density of a damped harmonic oscilla-
cussed extensively in the literature using MD simulation datdor [4,8]. This latter line shape, chosen arbitrarily, neverthe-
[5,6] and by a further INS experiment of wafét]. However, less is routinely used to extract the basic features expected
because of the kinematic restriction in inelastic neutron spedor the inelastic part o8(k,w). From a purely experimental
troscopy and the different interaction potential models usedOint of view, one usually observes a prominent central peak
in various MD simulations, the high frequency sound disper-21d two weak side wings from which one merely tries to

sion relation of water remains a controversial topic. Re-€Xract, phenomenologically, the position and width of the

cently, a high-resolution inelastic x-ray scatterifitxs) side peaks. Frork dependence of these two quantities, one

technique has been developed, which can investigate a mué’ﬂen extracts the propagat'ing high-frequency sound speed
. . and thek-dependent damping constant of the sound. One
larger k,w) region of the dynamic structure fact@(k, ),

£ th llectiv nter of m motion of water. Using thi should keep in mind, however, that the above mentioned
ot Ihe coflective center of mass motion of water. ising tiSq ., entional way of the spectral analysis ignores the inti-
new tool, Setteet al. [8—10] found the transition of sound

X - . mate(theoretical connection between the spectral intensities
velocity from the low frequency adiabatic valu&,  of the three lines and assumes the existence of the two side
=1500m/s at lowk, to a high-frequency value, more than heaks with an arbitrary proportion of intensities with respect
twice larger,c.,=3200+ 320 m/s, ak value around 2 N, g the central line. This results in too many parameters in the
This transition was found to be temperature dependent and fting function (four). At present, INS is a rather difficult
probably related to the structural relaxation process in th@xperiment to do, which requires deuterated liquids and
connected region of hydrogen bond network in wgtR].  state-of-the-art neutron instruments available only at few
To have a clear picture about the relation between the struglaces in the world. The high-resolution IXS spectrometer,
tural relaxation andk-dependent sound propagation, the spe-on the other hand, is a brand new development existing only
cific models are needed to extract reliable values of the paat a third generation synchrotron x-ray source at the Euro-
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pean Synchrotron Research FaciliiZSRF in Grenoble,
France. One therefore would like to have a theory which is
applicable for describing larg& density fluctuations that
gives the relative intensities of the triplet and thereby can
extract from the measured spectra more information with re-
gard to the molecular scale density fluctuation in an impor-
tant fluid like water. This paper is a first step toward this goal
by presenting two phenomenological models for the analysis

of existing high-resolution IXS data for the low- and high-
temperature water.

The IXS experiment was carried out at a very high-
resolution inelastic x-ray scattering beam lif&.21-I1D 16)
at the ESRF. The undulator x-ray source was monochro
mated by a SiL11) double crystal monochromator and a
high-energy resolution back scattering monochrométtam-
perature controlled and scanngdperating either at the
Si(999 (x-ray energy 17.794 KeVor Si(11111) (21.748

KeV) Bragg reflections. The scattered photons were col- -
lected by a grooved spherical silicon crystal analyzer operatnd functions,F(k,t)/S(k), of the ce
ing at the same Bragg backreflections, and in Rowland ge-.

ometry. The net energy resolution function was measured b
an elastic scattering of a plastic sample at its maximum o
the structure factor. The energy resolutions were 3.2 and 1
meV (full width at half maximumFWHM)) for Si(999) and

Si(1111 11 reflections respectively. The x-ray beam size at, hare A(K)

the sample was 0.1 mrD.3 mm and the high-purity water
sample thickness was 18 rrhl]. The IXS measurements on
H,O were made ak-values of 1, 2, 4, 7, 10 nnt at two
temperature3 =294, 273 K, and ak values of 2, 4, 6, 8, 10
nm ! at a temperatur@ =259 K. To maintain the density of
p~1.0g/cnt at a supercooled temperature, a pressur® of
=2.0kbar was applied to the sampleTat 259 K [2].
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FIG. 1. A set of MD simulation generated intermediate scatter-
nter of mass of water at
238K at differentk values:k=3.3 nn* (circle), 4.4 nm ! (right
iangle, 6.7 nnit (squarg, 22.3 nm! (down triangle. The solid
%les are fits by the dynamic cage model. The values of structure

ctor S(k) are taken from the SPC/E MD simulation at the same
temperature.

is the coherent Debye-Waller factor and
Forri(k,t) the normalized ISF calculated by a modified
Q-dependent triple relaxation timeQTRT) kinetic model
[12]. The conventional QTRT14,15 is an approximate so-
lution of the generalized Enskog equation which calculates
the dynamic structure fact@(k,w) from a given structure
factor S(k). The calculated dynamic structure factor has the
correct third moment for the hard sphere sysfd@] as well

as the correct second moment for general fluids. The conven-

Il. DYNAMIC CAGE MODEL tional QTRT gives the correct form for the two well-

The dynamic cage model has been developed to ana|yig1derstood limiting cases: for dilute gasses and dense fluids
the collective part of intermediate scattering functi®@F)  in the hydrodynamic regime. Furthermore, it has an appro-
generated from MD data of extended simple point chargériate analytical structure that describes a continuous transi-
(SPC/B supercooled watef12]. It combines the short time ~ tion between these two limi{45], and is known to describe
in-cage dynamics described by a generalized Enskog kineti®e density fluctuation of moderately dense hard sphere flu-
theory with a long-time cage relaxation dynamics describedds well [16,17. The conventional QTRT has three input
by an alpha relaxation. The latter is appropriate when th@arameters, aside from the well-known thermodynamic pa-
cage effect is dominant and the ISF shows a well separatd@meterssuch as thermal speeq): the static structure fac-
two-step relaxation. According to a previous MD simulationtor S(k), the pair correlation function at contag{o), and
[13], ISF of supercooled water initially decays within 1 ps to the hard sphere diameter. Since the generalized Enskog
a plateau value determined by a coherent Debye-Waller fadinetic equation considers only uncorrelated binary colli-
tor. Then it relaxes slowly, according to a stretched exponensions between hard spheres, one need an additional corre-
tial time dependence, with kdependent relaxation time  lated collision term to describe the dense fluids at larger
and a stretch exponeyt (see Fig. 1 The evolution of ISF  Wave vectors probed by the IXS. In R¢ll2], we showed
can therefore be expressed as a product of two factors: tHchematically that for supercooled water where the local
relaxation function representing motions within the cage andtructural relaxation time is well separated from the in-cage
the cage relaxation function. The in-cage relaxation functiorf€laxation time, the interplay of the binary collision term and
decays from an initial value of unity to the Debye-Waller the correlated collision term at the memory function level
factor at long-time defined by the potential well of the con-leads to the de-coupling form of ISF as given by E). To
fining cage. The cage relaxation caused by the local strucddive the correct second and third frequency moment of the
tural relaxation can be described by anrelaxation de- SPectrum corresponding to ISF in EJ), one has to multi-
scribed by the well-known Kohlrausch form dxg(t/n)%.]  Ply the thermal speed/o=(kgT/m)** by a factor 11

The ISF for the entire time range is therefore written as ~ —A(k)]¥? and theg(o) by a factor{ 1—A(k)]"*[12]. This
kD) modification shows that the Debye-Waller factor, describing
|t

the cage formation at different wave vector, has a significant
S(k) effect on the in-cage short-timéigh frequency dynamics.
The Eqg.(1) and its corresponding modification of the con-

D

B
={[1-AK) JFgrri(k,t) +A(k)}exp[ - ( ET)
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TABLE |. The extracted parameters by fitting IXS dataTat

=259 K with the dynamic cage model.

k (nm™) 2.0 4.0 6.0 8.0 10.0
A(K) 0625 0719 0.765 0.773  0.780
(k) (ps) 2.88 2.24 1.11 1.14 1.18

INd
)

region (see Fig. 2 in Ref[5]). In the fitting, the stretch ex-
ponentg is fixed at a value 0.78rom MD), the hard sphere
diameterc=27.5nm andg(c)=3.2 [12]. Therefore, there
are only two adjustable parameters: tkelependent cage
relaxation time r(k) and the Debye-Waller factoA(Kk),
which are listed in Table I. The individual contributions of
the QTRT versus the stretched exponential in a typical fit
(k=4 nm 1) are shown separately in Fig. 3. The total fit
curve is the sum of the two types of contributions. The
QTRT contribution is the convolution of the spectrum calcu-
lated by modified QTRT method with the spectrum of the
stretched exponential, since the spectrum of the stretched
exponential is a very sharp curve, the convoluted QTRT con-
tribution remains a similar shape as the original one. The
inset of Fig. 3 shows that the stretched exponential contrib-
utes mainly to the quasi elastic central line, and the QTRT
contributes to the high frequency excitations. One may note
that the use of a stretched exponential to model a quasi elas-
tic central line has been reported in the Hdf8] where the
- authors analyzed the high-resolution quasielastic incoherent
FIG. 2. IXS spectra of b0 atT=259 K taken at the |nd|_catdd . neutron scati/ering of sugpercooled wa?er contained in a po-
values. The experimental data are shown together with the fits . .
(solid line) by the dynamic cage model as explained in the text. The 0YS glass. The. dyr.]amlc cagg mod(_-:'l is seen to successfully
experimental data is normalized to have unity area over the meas-eparate,s. contribution of the inelastic SpeCt,rum' mOdeled by
sured energy transfer range. t_he modified QTRT, from that of the quasi elastic central
line, modeled by the stretched exponential.

N

—
m—
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0
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ventional QTRT has been shown to be essential in fitting the
MD generated ISF of supercooled wafé&g].
In order to fit IXS data, Eq(1) is Fourier transformed to The TEE model has already met with successes in de-

obtain the dynamic structure factor, multiplying by the de-scribing the behavior of dynamic structure factor at firkite
tailed balance factor, and convoluted with the energy resolu-

tion functionR(w).

Ill. THREE EFFECTIVE EIGENMODE (TEE) MODEL

—-13

x10

S(k,w)/S(k) =[1—A(k)]Sqrri(K, @) ® Sqexf K, ) 16f
®R(w)+A(K)Ss exf @) ®R(w), (2 _1a4r
S12t
whereSqrri(K, w) is the dynamic structure factor calculated g
by the modified QTRT kinetic model, anf¢.(k,w) the g
Fourier transform of the stretched exponential. We fitted the %087
lowest temperatureT(= 259 K) IXS data of water using Eq. 27
(2). The IXS spectra al =259K, taken at different wave §0-6-
p=4

vectork, are shown in Fig. 2. together with the model fits. At
both sides of the quasi elastic line, it is apparent that there
are inelastic scattered intensity at energies that change with
k. These inelastic scatterings are due to collective excitations
in water[18].

Since the IXS spectra of water at supercooled temperature
were taken at a pressure of 2.0 kbar, there is no experimental g 3. |xs spectra of KD at T=259K, k=4 nm™* (open
center-of-mass structure factor available at this conditiongircie) shown together with the fit with the dynamic cage model

We therefore use the value of the static structure fa8f&)  (thick solid line, the QTRT and stretched exponential contribution

0.2f

o
~20

from a MD simulation at temperatur€=270K [5]. The
structure factor as shown in Fig. 5 in the ldwregion is
rather flat, and the temperature variation is weak in this

before convolution with the resolution function. The inset is the
QTRT and stretched exponential contribution after convolution
with the resolution function.
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values for hard sphere systdd®—21], Lennard-Jones fluids whereI's=(1/2)¢+ (1/2)(y—1)D+ is the sound damping.
[1], classical fluids like Ar, Ne, KriHe at high temperature, For finite k,z,(k), fy1(k), zr(k) become arbitrary func-
and super fluid*He [22]. For these cases it has been showntions of k. However, in most cases, the eigenvalues of the
that ISF of the density fluctuation can be well described by anatrix [Eq. (5)] consists of one real numbey and a couple
sum of three exponential functions associated with thre®f conjugate complex numbeils,*~iw;. We can therefore
slow conserved hydrodynamic eigenmodes of the fluid, thevrite the solution of Eq(5) in general in the hydrodynami-
so-called extended heat mode and two extended sourglike form[15,26].

modes. Although this description is an extended hydrody-
namic model, it has been shown that it provides a good ap-
proximation for theS(k,w) in the widek range from O up to
15ko 5 [1], whereo ; is Lennard-Jones diameter. The TEE
model can be derived from Zwanzig-Mori projection opera- I's—b(w—ws)
tor formalism[23,24), in Appendix we give another plau- +A5(w_ws)2+r2
sible argument for the TEE model. In the TEE model, the °
correlation function matrixG(k,z) for the three slow micro- The correlation function of the density fluctuation is the cor-

A Zh N I's+b(w+ ws)
0w2+zﬁ S(w+ws)2+F§

1
S(k,w)/S(k) = ;[

. (8

scopic fluctuations: number densitiabeled as ), longi-  responding time-domain resuR7]:
tudinal velocity (labeled as U”), and energy(labeled as
“T"), obeys a hydrodynamic-like equation: F(k,t)/S(k)=Ag exp( —zut) + 2Asexp( —T'gt)
Zé(k Z)=—ﬁ(k)§(k Z)+r 3) X[cog wgt) +b sin(wgt)]. (9)

Although the Eq.(8) contains six parameters, they are all

functions of the three independent parameters given in Eq.

e{ i ] (5). Therefore, the normalized dynamic structure factor is the
1,1

The dynamic structure factor is then given as,

S(k)R

T

(4) function of the three independent adjustable parameters for
which the lowk limits are known exactly.

One can also cast the TEE model in the form of a contin-
ued fraction expansiof27],

S(k,w)= —
iwl +H(k)

where I is the 3x3 identity matrix, label 1,1 means the

(1,1 element of the matrix. The matrli?(k) is fzn(k) -1
, S(k,z)=| z+ = — (10)
0 ifullo 0 z+27,(k) + urlld
o= ifuk)  zk)  ifk |, ) 2+ zr(k)
0 ifur(k)  z(k) From this, the second-order memory function of the correla-
) ) tion function of the density fluctuation is given as:
with f,,(k) determined by the second momentS3fk, w) to
be kvo[S(k)]¥2 Three independent parameters;(k), f,7(K)
fu7(k), zr(k) are all real numbers. For sm& the Eq.(5) Ki(k,z)=z,(k)+ 27K’ (11)

tends to the hydrodynamic matrix where the matrix elements

have values given byl,25]: with a Marlkovian viscosity terng,(k) and a thermal fluc-

tuation term having the finite decay tinzg(k) [27]. From

f““(k):kCS/\/; (6a) Eqg. (10), we can also see two special cases of the TEE
— 12 model.
Zu(k)= ¢k (6b) Whenf (k) =0, the model becomes a damped harmonic
2+(K) = yD k2 (60 oscillation (DHO) model[8,22], where the amplitude of the
T L) central peak o5(k,w) is zero, the side peaks represented by
fur(k)=kee(y— 1)1y (6d) the last two terms in Eq8) can be rewritten as:
uT — Rbs .
12 ; S 1 f2 (K)zy(k)
Here,cs=Vvg[ y¥/S(0)]~“ is the adiabatic speed of soung; - unt ™/ 7u
_ _ < ) S(k,w)/S(k) 7 5 5. (12
=c,/c, is the ratio of the specific heat per unit mass at 7 [0 = fin(K) ]+ [wzy(K)]

constant pressure and volume=[(4/3)n+ {]/nm is the

kinematic longitudinal viscosity, whergand¢ are the shear ~ Whenz,(k) =0, the second-order memory function only
and bulk viscosity, respectivelfdt=\/nmg, is the thermal ~ consists of one Lorentzian form with the decay timk),
diffusivity, where \ is the thermal conductivity. The three Which is the so-called viscoelastic moder,2§.

eigenvalues of the hydrodynamic matrix are therefore the To fitthe IXS data, we use the three adjustable parameters
three hydrodynamic modes. Here, we only give the threén the matrix[Eq. (5)]. Figure 4 shows the IXS spectra at

eigenvalues up to the order 6X(k?) T=273K][Fig. 4a)], T=294 K[Fig. 4(b)] at differentk val-
ues together with the model calculatiofs®lid lineg which
z,(k)=D7k? (heat modg (73 are already convoluted with the energy resolution function.

Figure 5 shows the three extracted fitting parameters of TEE
z.(k)=*ick+I'k?® (sound modg (7b) model and the input static structure facfik) [5].
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FIG. 4. (a) The IXS spectra of bD at T=273K taken at the
indicatedk values. The experimental datapen circl¢ are super-
imposed to the fitsolid line) by the TEF model as explained in the
text. (b) The IXS spectra of bD atT=294 K taken at the indicated
k values. The experimental datapen circlg are superimposed to
the fit (solid line) by the TEE model as explained in the text.
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FIG. 5. The extracted fitting parameters from IXS spectra by
Three Effective Eigenmode model at indicated temperatures, plot-
ted together with the input static structure factor. The dotted lines
are the expected hydrodynamic behaviors.

IV. SOUND PROPAGATION
AND RELAXATION RATE

The sound speed and sound damping are well defined in
the Brillouin light scattering29,30, where the sound speed
is the position of the side peak divided by thealue and the
sound damping is the width of the side peak. Table Il lists
the physical properties of water, including the quantities to
determine the low-frequency sound speed and damping. In
the case of IXS and INS, whekevalue becomes comparable
with the inverse of the typical inter-molecular distance, the
above hydrodynamic behavior is replaced by kinetic effects
of molecular collisions manifesting through the merging of

TABLE Il. Physical properties of KO at 1 atm, 273 K29].

Density p (kg/nT) 1.0
Specific Heat Ratioy=c,/c, ~1.0
Isothermal compressibiliti+ (106 bar 1) 52.24
Adiabatic Sound Speeck= (y/pK1)*2(m/9) 1380
Shear Viscosityy (10 kgm ts™%) 18.284
Ratio of the bulk to shear viscosi®/ » 1.90
Longitudinal viscosityg=[(4/3)p+ (]/p (10 3cms?t)  59.1
Specific heat at constant pressepgkd kg K ™)* 4.22
Thermal conductivityn (10 3W m 1K 1)* 561.1
Thermal diffusivityD+=\/pc, (10 3 cn?s™?) 1.33

*From Ref.[31].
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FIG. 6. The dispersion curve of,@ extracted from IXS spectra
at the indicated temperatures. The solid symbols dengfeom the and TEE modelsolid line). The parametergincluding o, T’ b in

TEI.E model, and the open symbpls are from the dyr_1am|c _(:lelge Eq. (8)] in the TEE model are taken from the best fitting of the IXS
netico model. The dash-dotted line represents a dispersion curve _ " _

- Spectra of water ak=2 nm ~ andT=273 K. For the DHO model
with a sound speed=2900 m/s.

[Eq. (13)], Q=ws, I'=2I", the amplitude is arbitrary.

FIG. 7. The side peaks calculated by DHO mo(tstted ling

the Raleigh-Brillouin triplets into one nearly Gaussian line in
most of the measured scattering wave vector range. In factp the TEE model the side peaks are modeled by a
even at the lowest magnitude bfmeasured, the triplet ex- hydrodynamic-like formalisnfithe last two terms in the r.h.s.
hibits a huge peak at the center with two weak shoulders atf Eq. (8)]. Figure 7 shows the difference between these two
the side(see Figs. 2 and)4 These side shoulders are the descriptions. One can see that even though the two models
evidence of the collective excitations. As an example in Figuse the same value of the peak position parameter, the TEE
4(a), at k=2.0nm* a broad inelastic shoulder occurs at mode produces a side peak always at the right-hand side of
around 3.7-0.5 meV, which gives the sound velocity around one produced by DHO model. That is to say, to generate a
2810+400 m/s. Ak becomes larger, the increasing dampingsame side peak, the DHO model must have a larger value of
of the sound mode makes the sound excitations less visiblé).
In order to get a reliable sound speed, the model calculation Figure 8 shows the sound damping at differeaind tem-
is needed. Ak=10.0nm !, the sound mode almost merges peratures. The sound dampifigin TEE model is defined as
into the long tail of the quasielastic peak. the real part of the complex eigenvalue of the hydrodynami-
Using the two models described in the Secs. Il and 111, weclike matrix [Eq. (5)]. Also shown is the line width of the
successfully extracted the sound speed and the sound dangide peak by INS of liquidd,O at room temperaturf4].
ing. Figure 6 shows the dispersion curve extracted from IXSThey both demonstrate a similar variation proportionakto
spectra. The sound excitation frequendigslid symbol$ in
this figure are defined as the imaginary part of the complex  , ‘
eigenvalue of the hydrodynamiclike matrix given in E§), oT =294 K
which is also the positions of the two side peaksS{ik, w) | mT=273K
defined as the last two terms of r.h.s. in ). In this figure, «T=259K
we also show the sound excitation frequencies extracted L 5INS DO [4]
from the dynamic cage modé&pen symbols which are the 2
side peak positions of the QTRT contribution. Because the
side peaks in the QTRT contribution become difficult to be
identified at largek values, we can only extract three lowest
k values k=2,4,6 nm%) with the error bars indicating the
uncertainty to determine the peak positions. The dispersion
curves extracted from the two models agree quite well, giv- ;
ing the sound speeat= 2900+ 300 m/s, which is about twice ol ¢
the adiabatic sound speed at low frequency. This value of the
high frequency sound speed is slightly smaller than the val- 0
ues given in the Refd8] and[9]. The reason for this dis-
agreement is because they are extracted using different mod-
els. In the Refs[4], [8] and[9], the side peaks are described  FIG. 8. The sound damping plotted agaikétextracted from
by the DHO model given as, IXS spectra. The solid symbols referlq from the TEE model, the
ar? open symbols to side peak line width from the Rédf], the dotted
S(k, )/ S(K) = E _ (13) line _to th_e hydroo!ynamic extrapolation &t=273 K, and the solid
: 7 (0?— Q%)%+ (wl)? straight line is guided by the eye.
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1.4 : . V. DISCUSSION AND CONCLUSION
12 . ES%& We have analyzed a set of IXS spectra of low temperature
4 T=250K water using two different models: the dynamic cage model
< kinetic T=259 K . .
T 4l and TEE model. From these analysis, we are able to obtain
é the Debye-Waller factor and the cage relaxation time at the
=08 lowest temperature T=259K), and the high frequency
B sound dispersion relation, the sound damping and the relax-
Sosl ation rate associated with the quasi elastic peak. The Debye-
"5 Waller factor in the lowest temperature is consistent with our
804l previous study of the SPC/E water at supercooled §ficdp
= We have shown the significance of the relative proportion
o0zl and mutual interaction between the quasi elastic peak and
inelastic peaks in the model descriptions. In order to extract
o ¥, , . . . reliable values of physical quantities, it is important to have

0 2 4 6 8 10

K (™) a correct theory for the description of the triplet, not just a
nm

phenomenological fitting function.

FIG. 9. The relaxation rate of the central peak extracted from W€ note that the two models we used for data analysis
IXS spectra. The solid symbols refer Fofrom the TEE model, the ~Can be cast into one similar form: a central peak plus two
open symbols to the average relaxation rate of the stretched exp&YMMmetric side peal_(s. For the dynamic cage model, the cen
nential in dynamic cage model. The dotted line is the hydrodynamidral peak is the Fourier transform of the stretched exponential
extrapolation aff =273 K. The solid lines are the direct connec- and the side peak is mainly due to the contribution of the
tions of the symbols. modified QTRT kinetic model. For the TEE model, the cen-
tral peak is the Fourier transform of the exponential function

. ! , and the side peak is a hydrodynamiclike function. While the
(except the two data of highekstin Ref. [4] with large error TEE model well describes the IXS spectra for all three tem-

barg, and much smaller than the hydrodynamic extrapola- . . '
tion to thisk range. The sound damping from the IXS dataperatures, the dynamic cage model is only used to fit the

also shows a temperature dependent behavior: as temperat Icr)west temperature data. We also note from a recent MD
P aep : Peratiifulation [12,13 that in the supercooled water, the inter-
decreases, the sound excitation peak becomes sharper.

The relaxation rate represented by the width of the quasi[nedla'[e scatteringlSF function exhibits a well-separated

. o e X .~ two-step decay and the long-timerelaxation is a stretched
elastic peak is difficult to determine because the reSOIUt'O%xponential This MD generated ISF, without being smeared

function of IXS spectrometer is much wider than the true . : . . .
) . .~ by a resolution function, is well described by the dynamic
width of the central peak cf(k,). In this case, the sensi- cage mode]12]. But it can not be fitted with the TEE model

tive part of S(k,w) in fitting process is not the shape of the = - . -
central peak, but the width, height of the central peak and th'¥vh|ch fails to generate a stretched exponential decay. This

tributi f the sid K to the low-f - act indicates that the TEE model is only suitable for the
contributions ot the side peak to the low-trequency part. N, .5 fuids where the cage life tinfeelaxation time is not
the dynamic cage model, we fit the central peak as the Fo

rier transform of the stretched exponential, where in the TE ong enough for the cage effect to become dominant in the
model, we fit with the Lorentzian function. Figure 9 shows ynamic process. But the dynamic cage model, which suc-

. cessfully incorporates both the appropriate short-time colli-
the relaxation rate extracted from these two models. In th%. . . L
; X ) ional dynamics and a long-time structural relaxation in su-
TEE model, the relaxation rate is defined tolbeg=z,), the Y g

[ ei | f th trix in E In the d : percooled liquids where the cage effect is dominant, is
real eigenvalue of the matrixin ). In the ynamic cage §uitable for describing dynamics in supercooled liquids.
model, the relaxation rate is the average relaxation rate o

stretched exponential, which is
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with G(x) the gamma function. One can easily verify that as'iSion of the U.S. DOE.
B=1, this definition becomes the spectral width of the expo-
nential function and is equivalent to the definition in the TEE
model. From Fig. 9, one can see that the central peak be-
comes wider a& increases and temperature increases in the Here, we derive the three effective eigenmode model
normal liquid region(T is larger than 273 K The relaxation  based on the method described in R&B]. We consider the
rate atT =259 K displays a different variation, which may be dynamic correlation functions

related to the extra pressure applied to the sample. The dif-

ferent values al =259 K obtained from the TEE model and

the dynamic cage model are due to the different contribu- o

tions to the low-frequency part by the inelastic part. Fapk;2)= < b% (k) ﬁbf”'(k)> (A1)

APPENDIX
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where the brackef) indicates an equilibrium average over a In order to contract the infinite matrix equation of E410)
canonical ensemble i particles, the star denotes complex to a 3X3 matrix equation, we can decompose an infinite
conjugation,L is the Liouville operator of the system given matrix A into four blocks as:

by

LRES N

mizj ar; v’ (A2)

A33 K3M

Aws

= lim

M— o

, (A13)

P

AMM

andb, (k) are the microscopic fluctuation with the first three where Ags, Agy ,Ayz, Ayy represents the matrix of>33,3

conserved quantities defined as,

=z

by (k)= e i (A3)
is the microscopic density fluctuation;
N
1 K-vi
by(k)= ——Le kT A4
2( ) \/NJE kVO ( )

is the microscopic longitudinal velocity fluctuation with
= (kgT/m)*? the thermal velocity; and

3—-mv?/(kgT)
VJ ( B )e—lk-r]— (AS)
J6

Z

XM,MX3MXM, respectively. One then can write out the

equation for the correlation functio€33(k,z),§,\,|3(k,z)
from Eq.(A1l) as

2Gay(k,2) = La3(k) Gag(k,2) + Loy (k) Gya(k,z) + 133
(A14)

2Gya(k,2)=Lya(k) Gag(k,2) + Lym(K) Gya(k,2).
(A15)

The correlation functior@m(k,z) can be solved out from
Eqg. (A14), and inserted into EA13) one gets

2Gay(k,2)=Hay(k,2)Gag(k,2) + 1 33, (A16)

with a zdependent X3 matrix

is the microscopic temperature fluctuation. One can also de-

fine the microscopic dynamic quantitieés,(k) at >3, so

that they are orthonormal including the above defined hydro-

dynamic conserved quantiti¢21]

(b} (K)bg(k))= 8,4 (AB)
and complete,
2 (k) (ba(k)] =1 (A7)
The Eqg.(Al) can be rewritten as
Fap(k,2)=(ba(K)[bg(k,2)) (A8)
with
1
[bg(k,2))= |b,3 (A9)
so that
z|bg(k,2))=L|bg(k,2))+|bg(k)). (A10)

Then after multiplying(b* (k)| to the Eq.(A10) and using
Egs.(A7) and(A8) we get:

ZF,p(k2)=2 Lo (KF,4(K2)+ 8,5, (ALl
Y

where the element of the infinite symmetric matrix is

=(b,(K)[|L[bg(k)). (A12)

Lo 5(K)

33(k2) L33(k)+L3M(k)[ZIMM LMM(k)] 1|—|v|3(k)
(A17)

From the fact

(A18)

'k
(k)=

one can get that the elements of the first column and the first
row of the matrixLH°°(k) are all zero, except the two elements

L300 = L5k = —if (k) = _F:; (A19)

This makes the 33 matrix ﬁ33(k,z) containing only three
unknown quantities: Hox(k,z), Hyy(k,z2) [=Hk,2)],
Hzs(k,z). Thez dependence of the elements comes from the
z dependence of the second term of the &ijl4), which is
the z dependence of the correlation function of the three hy-
drodynamic fluctuation with other dynamic quantitiea (
>3). When the time decay of the correlation function
Gp(k,t)(@<3,6>3) is much faster then the decay of the
correlation functionG,4(k,t)(a<3,6<3), which means
the considered correlation spec@3(k,z) («<3,8<3) are
much closer to low-frequency region, one can introduce an
approximation by setting the=0 at the left-hand side of the
Eq. (A15) and hence the-dependent matrixisx(k,z) is re-
placed by the matrit (k) = Hsy(k,z=0).

One can show that the above derivation is equivalent to
the projection formalism used to derive ax5 effective
eignemode description in Rgfl].
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