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Analysis of inelastic x-ray scattering spectra of low-temperature water
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We analyze a set of high-resolution inelastic x-ray scattering~IXS! spectra from H2O measured atT
5259, 273, and 294 K using two different phenomenological models. Model I, called the ‘‘dynamic cage
model,’’ combines the short time in-cage dynamics described by a generalized Enskog kinetic theory with a
long-time cage relaxation dynamics described by an alpha relaxation. This model is appropriate for super-
cooled water where the cage effect is dominant and the existence of an alpha relaxation is evident from
molecular-dynamics~MD! simulation data of extended simple point charge~SPC/E! model water. Model II is
essentially a generalized hydrodynamic theory called the ‘‘three effective eigenmode theory’’ by de Schepper
et al. @1#. This model is appropriate for normal liquid water where the cage effect is less prominent and there
is no evidence of the alpha relaxation from the MD data. We use the model I to analyze IXS data atT
5259 K ~supercooled water!. We successfully extract the Debye-Waller factor, the cage relaxation time from
the long-time dynamics, and the dispersion relation of high-frequency sound from the short time dynamics. We
then use the model II to analyze IXS data at all three temperatures, from which we are able to extract the
relaxation rate of the central mode and the damping of the sound mode as well as the dispersion relation for the
high-frequency sound. It turns out that the dispersion relations extracted from the two models at their respec-
tive temperatures agree with each other giving the high-frequency sound speed of 29006300 m/s. This is to be
compared with a slightly higher value reported previously, 32006320 m/s, by analyzing similar IXS data with
a phenomenological-damped harmonic oscillator model@2#. This latter model has traditionally been used
exclusively for the analysis of inelastic scattering spectra of water. Thek-dependent sound damping and central
mode relaxation rate extracted from our model analyses are compared with the known values in the hydrody-
namic limit.

PACS number~s!: 61.20.Ja, 64.70.Pf
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I. INTRODUCTION

Stimulated by a pioneering molecular-dynamic~MD!
simulation made in 1974, which predicted the existence o
high-frequency propagating sound@3# in water, and a subse
quent experimental verification of it by an inelastic neutr
scattering~INS! spectroscopy@4# in 1985, the physical origin
of the high-frequency sound in water has since been
cussed extensively in the literature using MD simulation d
@5,6# and by a further INS experiment of water@7#. However,
because of the kinematic restriction in inelastic neutron sp
troscopy and the different interaction potential models u
in various MD simulations, the high frequency sound disp
sion relation of water remains a controversial topic. R
cently, a high-resolution inelastic x-ray scattering~IXS!
technique has been developed, which can investigate a m
larger (k,v) region of the dynamic structure factor,S(k,v),
of the collective center of mass motion of water. Using t
new tool, Setteet al. @8–10# found the transition of sound
velocity from the low frequency adiabatic value,c0

51500 m/s at lowk, to a high-frequency value, more tha
twice larger,c`532006320 m/s, atk value around 2 nm21.
This transition was found to be temperature dependent an
probably related to the structural relaxation process in
connected region of hydrogen bond network in water@4,2#.
To have a clear picture about the relation between the st
tural relaxation andk-dependent sound propagation, the sp
cific models are needed to extract reliable values of the
PRE 611063-651X/2000/61~2!/1518~9!/$15.00
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rameters governing the relaxation process and the so
propagation.

So far, these coherent INS and IXS data have been a
lyzed by assuming that the dynamic structure factorS(k,v),
expressing the power spectral density of the density fluc
tion of the center of mass, consists of a central Lorentz
peak and two symmetrically energy shifted side peaks re
sented by the spectral density of a damped harmonic osc
tor @4,8#. This latter line shape, chosen arbitrarily, neverth
less is routinely used to extract the basic features expe
for the inelastic part ofS(k,v). From a purely experimenta
point of view, one usually observes a prominent central p
and two weak side wings from which one merely tries
extract, phenomenologically, the position and width of t
side peaks. Fromk dependence of these two quantities, o
then extracts the propagating high-frequency sound sp
and thek-dependent damping constant of the sound. O
should keep in mind, however, that the above mention
conventional way of the spectral analysis ignores the i
mate~theoretical! connection between the spectral intensit
of the three lines and assumes the existence of the two
peaks with an arbitrary proportion of intensities with resp
to the central line. This results in too many parameters in
fitting function ~four!. At present, INS is a rather difficul
experiment to do, which requires deuterated liquids a
state-of-the-art neutron instruments available only at f
places in the world. The high-resolution IXS spectromet
on the other hand, is a brand new development existing o
at a third generation synchrotron x-ray source at the Eu
1518 ©2000 The American Physical Society
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PRE 61 1519ANALYSIS OF INELASTIC X-RAY SCATTERING . . .
pean Synchrotron Research Facility~ESRF! in Grenoble,
France. One therefore would like to have a theory which
applicable for describing largek density fluctuations tha
gives the relative intensities of the triplet and thereby c
extract from the measured spectra more information with
gard to the molecular scale density fluctuation in an imp
tant fluid like water. This paper is a first step toward this g
by presenting two phenomenological models for the anal
of existing high-resolution IXS data for the low- and hig
temperature water.

The IXS experiment was carried out at a very hig
resolution inelastic x-ray scattering beam line~BL21-ID 16!
at the ESRF. The undulator x-ray source was monoch
mated by a Si~111! double crystal monochromator and
high-energy resolution back scattering monochromator~tem-
perature controlled and scanned!, operating either at the
Si~999! ~x-ray energy 17.794 KeV! or Si~11 11 11! ~21.748
KeV! Bragg reflections. The scattered photons were c
lected by a grooved spherical silicon crystal analyzer ope
ing at the same Bragg backreflections, and in Rowland
ometry. The net energy resolution function was measured
an elastic scattering of a plastic sample at its maximum
the structure factor. The energy resolutions were 3.2 and
meV ~full width at half maximum@FWHM#! for Si~999! and
Si~11 11 11! reflections respectively. The x-ray beam size
the sample was 0.1 mm30.3 mm and the high-purity wate
sample thickness was 18 nm@11#. The IXS measurements o
H2O were made atk-values of 1, 2, 4, 7, 10 nm21 at two
temperaturesT5294, 273 K, and atk values of 2, 4, 6, 8, 10
nm21 at a temperatureT5259 K. To maintain the density o
r;1.0 g/cm3 at a supercooled temperature, a pressure oP
52.0 kbar was applied to the sample atT5259 K @2#.

II. DYNAMIC CAGE MODEL

The dynamic cage model has been developed to ana
the collective part of intermediate scattering function~ISF!
generated from MD data of extended simple point cha
~SPC/E! supercooled water@12#. It combines the short time
in-cage dynamics described by a generalized Enskog kin
theory with a long-time cage relaxation dynamics describ
by an alpha relaxation. The latter is appropriate when
cage effect is dominant and the ISF shows a well separ
two-step relaxation. According to a previous MD simulati
@13#, ISF of supercooled water initially decays within 1 ps
a plateau value determined by a coherent Debye-Waller
tor. Then it relaxes slowly, according to a stretched expon
tial time dependence, with ak-dependent relaxation timet
and a stretch exponentb ~see Fig. 1!. The evolution of ISF
can therefore be expressed as a product of two factors
relaxation function representing motions within the cage a
the cage relaxation function. The in-cage relaxation funct
decays from an initial value of unity to the Debye-Wall
factor at long-time defined by the potential well of the co
fining cage. The cage relaxation caused by the local st
tural relaxation can be described by ana relaxation de-
scribed by the well-known Kohlrausch form exp@2(t/t)b.#
The ISF for the entire time range is therefore written as

F~k,t !

S~k!
5$@12A~k!#FQTRT~k,t !1A~k!%expF2S t

t D bG ,
~1!
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where A(k) is the coherent Debye-Waller factor an
FQTRT(k,t) the normalized ISF calculated by a modifie
Q-dependent triple relaxation time~QTRT! kinetic model
@12#. The conventional QTRT@14,15# is an approximate so
lution of the generalized Enskog equation which calcula
the dynamic structure factorS(k,v) from a given structure
factor S(k). The calculated dynamic structure factor has t
correct third moment for the hard sphere system@12# as well
as the correct second moment for general fluids. The conv
tional QTRT gives the correct form for the two wel
understood limiting cases: for dilute gasses and dense fl
in the hydrodynamic regime. Furthermore, it has an app
priate analytical structure that describes a continuous tra
tion between these two limits@15#, and is known to describe
the density fluctuation of moderately dense hard sphere
ids well @16,17#. The conventional QTRT has three inp
parameters, aside from the well-known thermodynamic
rameters~such as thermal speedv0): the static structure fac
tor S(k), the pair correlation function at contactg(s), and
the hard sphere diameters. Since the generalized Ensko
kinetic equation considers only uncorrelated binary co
sions between hard spheres, one need an additional c
lated collision term to describe the dense fluids at lar
wave vectors probed by the IXS. In Ref.@12#, we showed
schematically that for supercooled water where the lo
structural relaxation time is well separated from the in-ca
relaxation time, the interplay of the binary collision term a
the correlated collision term at the memory function lev
leads to the de-coupling form of ISF as given by Eq.~1!. To
give the correct second and third frequency moment of
spectrum corresponding to ISF in Eq.~1!, one has to multi-
ply the thermal speedv05(kBT/m)1/2 by a factor 1/@1
2A(k)#1/2 and theg(s) by a factor@12A(k)#1/2 @12#. This
modification shows that the Debye-Waller factor, describ
the cage formation at different wave vector, has a signific
effect on the in-cage short-time~high frequency! dynamics.
The Eq.~1! and its corresponding modification of the co

FIG. 1. A set of MD simulation generated intermediate scatt
ing functions,F(k,t)/S(k), of the center of mass of water atT
5238 K at differentk values:k53.3 nm21 ~circle!, 4.4 nm21 ~right
triangle!, 6.7 nm21 ~square!, 22.3 nm21 ~down triangle!. The solid
lines are fits by the dynamic cage model. The values of struc
factor S(k) are taken from the SPC/E MD simulation at the sam
temperature.
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1520 PRE 61C. Y. LIAO, S. H. CHEN, AND F. SETTE
ventional QTRT has been shown to be essential in fitting
MD generated ISF of supercooled water@12#.

In order to fit IXS data, Eq.~1! is Fourier transformed to
obtain the dynamic structure factor, multiplying by the d
tailed balance factor, and convoluted with the energy res
tion functionR(v).

S~k,v!/S~k!5@12A~k!#SQTRT~k,v! ^ Ss exp~k,v!

^ R~v!1A~k!Ss exp~v! ^ R~v!, ~2!

whereSQTRT(k,v) is the dynamic structure factor calculate
by the modified QTRT kinetic model, andSs exp(k,v) the
Fourier transform of the stretched exponential. We fitted
lowest temperature (T5259 K) IXS data of water using Eq
~2!. The IXS spectra atT5259 K, taken at different wave
vectork, are shown in Fig. 2. together with the model fits.
both sides of the quasi elastic line, it is apparent that th
are inelastic scattered intensity at energies that change
k. These inelastic scatterings are due to collective excitat
in water @18#.

Since the IXS spectra of water at supercooled tempera
were taken at a pressure of 2.0 kbar, there is no experime
center-of-mass structure factor available at this conditi
We therefore use the value of the static structure factorS(k)
from a MD simulation at temperatureT5270 K @5#. The
structure factor as shown in Fig. 5 in the low-k region is
rather flat, and the temperature variation is weak in thik

FIG. 2. IXS spectra of H2O atT5259 K taken at the indicatedk
values. The experimental data are shown together with the
~solid line! by the dynamic cage model as explained in the text. T
experimental data is normalized to have unity area over the m
sured energy transfer range.
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region ~see Fig. 2 in Ref.@5#!. In the fitting, the stretch ex-
ponentb is fixed at a value 0.75~from MD!, the hard sphere
diameters527.5 nm andg(s)53.2 @12#. Therefore, there
are only two adjustable parameters: thek-dependent cage
relaxation timet(k) and the Debye-Waller factorA(k),
which are listed in Table I. The individual contributions o
the QTRT versus the stretched exponential in a typical
(k54 nm21) are shown separately in Fig. 3. The total
curve is the sum of the two types of contributions. T
QTRT contribution is the convolution of the spectrum calc
lated by modified QTRT method with the spectrum of t
stretched exponential, since the spectrum of the stretc
exponential is a very sharp curve, the convoluted QTRT c
tribution remains a similar shape as the original one. T
inset of Fig. 3 shows that the stretched exponential cont
utes mainly to the quasi elastic central line, and the QT
contributes to the high frequency excitations. One may n
that the use of a stretched exponential to model a quasi e
tic central line has been reported in the Ref.@18# where the
authors analyzed the high-resolution quasielastic incohe
neutron scattering of supercooled water contained in a
rous glass. The dynamic cage model is seen to success
separates contribution of the inelastic spectrum, modeled
the modified QTRT, from that of the quasi elastic cent
line, modeled by the stretched exponential.

III. THREE EFFECTIVE EIGENMODE „TEE… MODEL

The TEE model has already met with successes in
scribing the behavior of dynamic structure factor at finitek

ts
e
a-

TABLE I. The extracted parameters by fitting IXS data atT
5259 K with the dynamic cage model.

k ~nm21! 2.0 4.0 6.0 8.0 10.0

A(k) 0.625 0.719 0.765 0.773 0.780
t(k) ~ps! 2.88 2.24 1.11 1.14 1.18

FIG. 3. IXS spectra of H2O at T5259 K, k54 nm21 ~open
circle! shown together with the fit with the dynamic cage mod
~thick solid line!, the QTRT and stretched exponential contributi
before convolution with the resolution function. The inset is t
QTRT and stretched exponential contribution after convolut
with the resolution function.
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PRE 61 1521ANALYSIS OF INELASTIC X-RAY SCATTERING . . .
values for hard sphere system@19–21#, Lennard-Jones fluids
@1#, classical fluids like Ar, Ne, Kr,4He at high temperature
and super fluid4He @22#. For these cases it has been sho
that ISF of the density fluctuation can be well described b
sum of three exponential functions associated with th
slow conserved hydrodynamic eigenmodes of the fluid,
so-called extended heat mode and two extended so
modes. Although this description is an extended hydro
namic model, it has been shown that it provides a good
proximation for theS(k,v) in the wide-k range from 0 up to
15ksLJ @1#, wheresLJ is Lennard-Jones diameter. The TE
model can be derived from Zwanzig-Mori projection ope
tor formalism @23,24#, in Appendix we give another plau
sible argument for the TEE model. In the TEE model, t
correlation function matrixGJ (k,z) for the three slow micro-
scopic fluctuations: number density~labeled as ‘‘n’’ !, longi-
tudinal velocity ~labeled as ‘‘u’’ !, and energy~labeled as
‘‘ T’’ !, obeys a hydrodynamic-like equation:

zGJ ~k,z!52HJ ~k!GJ ~k,z!1 IJ, ~3!

The dynamic structure factor is then given as,

S~k,v!5
S~k!

p
ReH IJ

iv IJ1HJ ~k!
J

1,1

, ~4!

where IJ is the 333 identity matrix, label 1,1 means th
~1,1! element of the matrix. The matrixHJ (k) is

HJ ~k!5S 0 i f un~k! 0

i f un~k! zu~k! i f uT~k!

0 i f uT~k! zT~k!
D , ~5!

with f un(k) determined by the second moment ofS(k,v) to
be kv0@S(k)#1/2. Three independent parameters:zu(k),
f uT(k), zT(k) are all real numbers. For smallk, the Eq.~5!
tends to the hydrodynamic matrix where the matrix eleme
have values given by@1,25#:

f un~k!5kcs /Ag ~6a!

zu~k!5fk2 ~6b!

zT~k!5gDTk2 ~6c!

f uT~k!5kcsA~g21!/g. ~6d!

Here,cs5v0@g/S(0)#1/2 is the adiabatic speed of sound;g
5cp /cv is the ratio of the specific heat per unit mass
constant pressure and volume;f5@(4/3)h1z#/nm is the
kinematic longitudinal viscosity, whereh andz are the shear
and bulk viscosity, respectively;DT5l/nmcp is the thermal
diffusivity, where l is the thermal conductivity. The thre
eigenvalues of the hydrodynamic matrix are therefore
three hydrodynamic modes. Here, we only give the th
eigenvalues up to the order ofO(k2)

zh~k!5DTk2 ~heat mode! ~7a!

z1~k!56 icsk1Gsk
2 ~sound mode!, ~7b!
n
a
e
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whereGs5(1/2)f1(1/2)(g21)DT is the sound damping.
For finite k,zu(k), f uT(k), zT(k) become arbitrary func-

tions of k. However, in most cases, the eigenvalues of
matrix @Eq. ~5!# consists of one real numberzh and a couple
of conjugate complex numbersGs6 ivs . We can therefore
write the solution of Eq.~5! in general in the hydrodynami
clike form @15,26#.

S~k,v!/S~k!5
1

p H A0

zh

v21zh
2 1As

Gs1b~v1vs!

~v1vs!
21Gs

2

1As

Gs2b~v2vs!

~v2vs!
21Gs

2 J . ~8!

The correlation function of the density fluctuation is the co
responding time-domain result@27#:

F~k,t !/S~k!5A0 exp~2zht !12As exp~2Gst !

3@cos~vst !1b sin~vst !#. ~9!

Although the Eq.~8! contains six parameters, they are a
functions of the three independent parameters given in
~5!. Therefore, the normalized dynamic structure factor is
function of the three independent adjustable parameters
which the low-k limits are known exactly.

One can also cast the TEE model in the form of a con
ued fraction expansion@27#,

S~k,z!5F z1
f un

2 ~k!

z1zu~k!1
f uT~k!

z1zT~k!
G21

. ~10!

From this, the second-order memory function of the corre
tion function of the density fluctuation is given as:

KL~k,z!5zu~k!1
f uT~k!

z1zT~k!
, ~11!

with a Marlkovian viscosity termzu(k) and a thermal fluc-
tuation term having the finite decay timezT(k) @27#. From
Eq. ~10!, we can also see two special cases of the T
model.

When f uT(k)50, the model becomes a damped harmo
oscillation ~DHO! model @8,22#, where the amplitude of the
central peak ofS(k,v) is zero, the side peaks represented
the last two terms in Eq.~8! can be rewritten as:

S~k,v!/S~k!5
1

p

f un
2 ~k!zu~k!

@v22 f un
2 ~k!#21@vzu~k!#2 . ~12!

When zu(k)50, the second-order memory function on
consists of one Lorentzian form with the decay timezT(k),
which is the so-called viscoelastic model@27,28#.

To fit the IXS data, we use the three adjustable parame
in the matrix @Eq. ~5!#. Figure 4 shows the IXS spectra a
T5273 K @Fig. 4~a!#, T5294 K @Fig. 4~b!# at differentk val-
ues together with the model calculations~solid lines! which
are already convoluted with the energy resolution functi
Figure 5 shows the three extracted fitting parameters of T
model and the input static structure factorS(k) @5#.
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FIG. 4. ~a! The IXS spectra of H2O at T5273 K taken at the
indicatedk values. The experimental data~open circle! are super-
imposed to the fit~solid line! by the TEF model as explained in th
text. ~b! The IXS spectra of H2O atT5294 K taken at the indicated
k values. The experimental data~open circle! are superimposed to
the fit ~solid line! by the TEE model as explained in the text.
IV. SOUND PROPAGATION
AND RELAXATION RATE

The sound speed and sound damping are well define
the Brillouin light scattering@29,30#, where the sound spee
is the position of the side peak divided by thek value and the
sound damping is the width of the side peak. Table II li
the physical properties of water, including the quantities
determine the low-frequency sound speed and damping
the case of IXS and INS, wherek value becomes comparab
with the inverse of the typical inter-molecular distance, t
above hydrodynamic behavior is replaced by kinetic effe
of molecular collisions manifesting through the merging

FIG. 5. The extracted fitting parameters from IXS spectra
Three Effective Eigenmode model at indicated temperatures, p
ted together with the input static structure factor. The dotted li
are the expected hydrodynamic behaviors.

TABLE II. Physical properties of H2O at 1 atm, 273 K@29#.

Densityr ~kg/m3! 1.0
Specific Heat Ratiog5cp /cv ;1.0
Isothermal compressibilityKT (1026 bar21) 52.24
Adiabatic Sound Speedcs5(g/rKT)1/2 ~m/s! 1380
Shear Viscosityh ~10 kg m21 s21! 18.284
Ratio of the bulk to shear viscosityz/h 1.90
Longitudinal viscosityf5@(4/3)h1z#/r (1023 cm s21) 59.1
Specific heat at constant pressurecp ~kJ kg21 K21)* 4.22
Thermal conductivityl (1023 W m21 K21)* 561.1
Thermal diffusivityDT5l/rcp (1023 cm2 s21) 1.33

*From Ref.@31#.
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the Raleigh-Brillouin triplets into one nearly Gaussian line
most of the measured scattering wave vector range. In
even at the lowest magnitude ofk measured, the triplet ex
hibits a huge peak at the center with two weak shoulder
the side~see Figs. 2 and 4!. These side shoulders are th
evidence of the collective excitations. As an example in F
4~a!, at k52.0 nm21 a broad inelastic shoulder occurs
around 3.760.5 meV, which gives the sound velocity aroun
28106400 m/s. Ask becomes larger, the increasing dampi
of the sound mode makes the sound excitations less vis
In order to get a reliable sound speed, the model calcula
is needed. Atk510.0 nm21, the sound mode almost merge
into the long tail of the quasielastic peak.

Using the two models described in the Secs. II and III,
successfully extracted the sound speed and the sound d
ing. Figure 6 shows the dispersion curve extracted from I
spectra. The sound excitation frequencies~solid symbols! in
this figure are defined as the imaginary part of the comp
eigenvalue of the hydrodynamiclike matrix given in Eq.~5!,
which is also the positions of the two side peaks inS(k,v)
defined as the last two terms of r.h.s. in Eq.~8!. In this figure,
we also show the sound excitation frequencies extrac
from the dynamic cage model~open symbols!, which are the
side peak positions of the QTRT contribution. Because
side peaks in the QTRT contribution become difficult to
identified at largerk values, we can only extract three lowe
k values (k52,4,6 nm21) with the error bars indicating the
uncertainty to determine the peak positions. The dispers
curves extracted from the two models agree quite well, g
ing the sound speedc529006300 m/s, which is about twice
the adiabatic sound speed at low frequency. This value of
high frequency sound speed is slightly smaller than the
ues given in the Refs.@8# and @9#. The reason for this dis
agreement is because they are extracted using different m
els. In the Refs.@4#, @8# and@9#, the side peaks are describe
by the DHO model given as,

S~k,v!/S~k!5
1

p

VG2

~v22V2!21~vG!2 . ~13!

FIG. 6. The dispersion curve of H2O extracted from IXS spectra
at the indicated temperatures. The solid symbols denotevs from the
TEE model, and the open symbols are from the dynamic cage~ki-
netic! model. The dash-dotted line represents a dispersion c
with a sound speedc52900 m/s.
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In the TEE model the side peaks are modeled by
hydrodynamic-like formalism@the last two terms in the r.h.s
of Eq. ~8!#. Figure 7 shows the difference between these t
descriptions. One can see that even though the two mo
use the same value of the peak position parameter, the
mode produces a side peak always at the right-hand sid
one produced by DHO model. That is to say, to generat
same side peak, the DHO model must have a larger valu
V.

Figure 8 shows the sound damping at differentk and tem-
peratures. The sound dampingGs in TEE model is defined as
the real part of the complex eigenvalue of the hydrodyna
clike matrix @Eq. ~5!#. Also shown is the line width of the
side peak by INS of liquidD2O at room temperature@4#.
They both demonstrate a similar variation proportional tok2

ve

FIG. 7. The side peaks calculated by DHO model~dotted line!
and TEE model~solid line!. The parameters@includingvs ,Gs ,b in
Eq. ~8!# in the TEE model are taken from the best fitting of the IX
spectra of water atk52 nm21 andT5273 K. For the DHO model
@Eq. ~13!#, V5vs , G52Gs , the amplitude is arbitrary.

FIG. 8. The sound damping plotted againstk2 extracted from
IXS spectra. The solid symbols refer toGs from the TEE model, the
open symbols to side peak line width from the Ref.@4#, the dotted
line to the hydrodynamic extrapolation atT5273 K, and the solid
straight line is guided by the eye.
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~except the two data of highestk in Ref. @4# with large error
bars!, and much smaller than the hydrodynamic extrapo
tion to this k range. The sound damping from the IXS da
also shows a temperature dependent behavior: as temper
decreases, the sound excitation peak becomes sharper.

The relaxation rate represented by the width of the qu
elastic peak is difficult to determine because the resolu
function of IXS spectrometer is much wider than the tr
width of the central peak ofS(k,v). In this case, the sens
tive part ofS(k,v) in fitting process is not the shape of th
central peak, but the width, height of the central peak and
contributions of the side peak to the low-frequency part.
the dynamic cage model, we fit the central peak as the F
rier transform of the stretched exponential, where in the T
model, we fit with the Lorentzian function. Figure 9 show
the relaxation rate extracted from these two models. In
TEE model, the relaxation rate is defined to beG(5zh), the
real eigenvalue of the matrix in Eq.~5!. In the dynamic cage
model, the relaxation rate is the average relaxation rate
stretched exponential, which is

G5
1

t
5

b

tG~1/b!
, ~14!

with G(x) the gamma function. One can easily verify that
b51, this definition becomes the spectral width of the exp
nential function and is equivalent to the definition in the TE
model. From Fig. 9, one can see that the central peak
comes wider ask increases and temperature increases in
normal liquid region~T is larger than 273 K!. The relaxation
rate atT5259 K displays a different variation, which may b
related to the extra pressure applied to the sample. The
ferent values atT5259 K obtained from the TEE model an
the dynamic cage model are due to the different contri
tions to the low-frequency part by the inelastic part.

FIG. 9. The relaxation rate of the central peak extracted fr
IXS spectra. The solid symbols refer toG from the TEE model, the
open symbols to the average relaxation rate of the stretched e
nential in dynamic cage model. The dotted line is the hydrodyna
extrapolation atT5273 K. The solid lines are the direct conne
tions of the symbols.
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V. DISCUSSION AND CONCLUSION

We have analyzed a set of IXS spectra of low temperat
water using two different models: the dynamic cage mo
and TEE model. From these analysis, we are able to ob
the Debye-Waller factor and the cage relaxation time at
lowest temperature (T5259 K), and the high frequency
sound dispersion relation, the sound damping and the re
ation rate associated with the quasi elastic peak. The De
Waller factor in the lowest temperature is consistent with o
previous study of the SPC/E water at supercooled state@12#.
We have shown the significance of the relative proport
and mutual interaction between the quasi elastic peak
inelastic peaks in the model descriptions. In order to extr
reliable values of physical quantities, it is important to ha
a correct theory for the description of the triplet, not jus
phenomenological fitting function.

We note that the two models we used for data analy
can be cast into one similar form: a central peak plus t
symmetric side peaks. For the dynamic cage model, the
tral peak is the Fourier transform of the stretched exponen
and the side peak is mainly due to the contribution of
modified QTRT kinetic model. For the TEE model, the ce
tral peak is the Fourier transform of the exponential funct
and the side peak is a hydrodynamiclike function. While t
TEE model well describes the IXS spectra for all three te
peratures, the dynamic cage model is only used to fit
lowest temperature data. We also note from a recent
simulation @12,13# that in the supercooled water, the inte
mediate scattering~ISF! function exhibits a well-separate
two-step decay and the long-timea relaxation is a stretched
exponential. This MD generated ISF, without being smea
by a resolution function, is well described by the dynam
cage model@12#. But it can not be fitted with the TEE mode
which fails to generate a stretched exponential decay. T
fact indicates that the TEE model is only suitable for t
normal fluids where the cage life time~relaxation time! is not
long enough for the cage effect to become dominant in
dynamic process. But the dynamic cage model, which s
cessfully incorporates both the appropriate short-time co
sional dynamics and a long-time structural relaxation in
percooled liquids where the cage effect is dominant,
suitable for describing dynamics in supercooled liquids.
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APPENDIX

Here, we derive the three effective eigenmode mo
based on the method described in Ref.@19#. We consider the
dynamic correlation functions

Fab~k,z!5 K ba* ~k!
1

z2L
bb~k!L ~A1!

o-
ic
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where the bracket̂& indicates an equilibrium average over
canonical ensemble ofN particles, the star denotes comple
conjugation,L is the Liouville operator of the system give
by

L5(
i 51

N Fvi•
]

]r i
2

1

m(
iÞ j

]f i j

]r i j
•

]

]vi
G , ~A2!

andba(k) are the microscopic fluctuation with the first thre
conserved quantities defined as,

b1~k!5
1

ANS~k!
(
j 51

N

e2 ik•r j ~A3!

is the microscopic density fluctuation;

b2~k!5
1

AN
(
j 51

N k•vj

kv0
e2 ik•r j ~A4!

is the microscopic longitudinal velocity fluctuation withv0
5(kBT/m)1/2 the thermal velocity; and

b3~k!5
1

AN
(
j 51

N 32mv j
2/~kBT!

A6
e2 ik•r j ~A5!

is the microscopic temperature fluctuation. One can also
fine the microscopic dynamic quantitiesba(k) at a.3, so
that they are orthonormal including the above defined hyd
dynamic conserved quantities@21#

^ba* ~k!bb~k!&5dab ~A6!

and complete,

(
a

uba~k!&^ba~k!u5I . ~A7!

The Eq.~A1! can be rewritten as

Fab~k,z!5^ba~k!ubb~k,z!& ~A8!

with

ubb~k,z!&5
1

z2L
ubb~k!&, ~A9!

so that

zubb~k,z!&5Lubb~k,z!&1ubb~k!&. ~A10!

Then after multiplying^ba* (k)u to the Eq.~A10! and using
Eqs.~A7! and ~A8! we get:

zFab~k,z!5(
g

Lag
` ~k!Fgb~k,z!1dab , ~A11!

where the element of the infinite symmetric matrix is

Lab
` ~k!5^ba~k!uLubb~k!&. ~A12!
e-

-

In order to contract the infinite matrix equation of Eq.~A10!
to a 333 matrix equation, we can decompose an infin
matrix A into four blocks as:

AJ5 lim
M→`

F AJ33 AJ3M

AJM3 AJMM
G , ~A13!

whereAJ33,AJ3M ,AJM3 ,AJMM represents the matrix of 333,3
3M ,M33,M3M , respectively. One then can write out th
equation for the correlation functionGJ 33(k,z),GJM3(k,z)
from Eq. ~A11! as

zGJ 33~k,z!5LJ33~k!GJ 33~k,z!1LJ3M~k!GJM3~k,z!1 IJ33

~A14!

zGJM3~k,z!5LJM3~k!GJ 33~k,z!1LJMM~k!GJM3~k,z!.
~A15!

The correlation functionGJM3(k,z) can be solved out from
Eq. ~A14!, and inserted into Eq.~A13! one gets

zGJ 33~k,z!5HJ 33~k,z!GJ 33~k,z!1 IJ33, ~A16!

with a z-dependent 333 matrix

HJ 33~k,z!5LJ33~k!1LJ3M~k!@z IJMM2LJMM~k!#21LJM3~k!.

~A17!

From the fact

Lb1~k!5
2 ikv0

AS~k!
b2~k! ~A18!

one can get that the elements of the first column and the
row of the matrixLJ`(k) are all zero, except the two elemen

L21
` ~k!5L12

` ~k!52 i f un~k!5
2 ikv0

AS~k!
. ~A19!

This makes the 333 matrix HJ 33(k,z) containing only three
unknown quantities: H22(k,z), H23(k,z) @5H23(k,z)#,
H33(k,z). Thez dependence of the elements comes from
z dependence of the second term of the Eq.~A14!, which is
the z dependence of the correlation function of the three
drodynamic fluctuation with other dynamic quantities (a
.3). When the time decay of the correlation functio
Gab(k,t)(a,3,b.3) is much faster then the decay of th
correlation functionGab(k,t)(a,3,b,3), which means
the considered correlation spectraGab(k,z)(a,3,b,3) are
much closer to low-frequency region, one can introduce
approximation by setting thez50 at the left-hand side of the
Eq. ~A15! and hence thez-dependent matrixHJ 33(k,z) is re-
placed by the matrixH(k)5HJ 33(k,z50).

One can show that the above derivation is equivalen
the projection formalism used to derive a 535 effective
eignemode description in Ref.@1#.



W

er

s.

ri,

ec
s

n

er
et

C
G

tte

ys

ys.

er,

ica

G.

k,

1526 PRE 61C. Y. LIAO, S. H. CHEN, AND F. SETTE
@1# I. M. de Schepper, E. G. D. Cohen, C. Bruin, J. C. van Rijs,
Montfrooij, and L. A. de Graaf, Phys. Rev. A38, 271 ~1988!.

@2# G. Ruocco and F. Sette, J. Phys.: Condens. Matter11, R259
~1999!.

@3# A. Rahman, and F. H. Stillinger, Phys. Rev. A10, 368~1974!.
@4# J. Teixeira, M. C. Bellissent-Funel, S. H. Chen, and B. Dorn

Phys. Rev. Lett.54, 2681~1985!.
@5# F. Sciortino and S. Sastry, J. Chem. Phys.100, 3881~1994!.
@6# U. Balucani, G. Ruocco, A. Torcini, and R. Vallauri, Phy

Rev. E47, 1677~1993!.
@7# F. J. Bermejo, M. Alvarez, S. M. Bennington, and R. Vallau

Phys. Rev. E51, 2250~1995!.
@8# F. Sette, G. Ruocco, M. Krisch, U. Bergmann, C. Masciov

chio, V. Mazzacurati, G. Signorelli, and R. Verbeni, Phy
Rev. Lett.75, 850 ~1995!.

@9# F. Sette, G. Ruocco, M. Krisch, C. Masciovecchio, R. Verbe
and U. Bergmann, Phys. Rev. Lett.77, 83 ~1996!.

@10# A. Cunsolo, G. Ruocco, F. Sette, C. Masciovecchio, A. M
met, G. Monaco, M. Sampoli, and R. Verbeni, Phys. Rev. L
82, 775 ~1999!.

@11# R. Verbeni, F. Sette, M. Krisch, U. Bergmann, B. Gorges,
Halcoussis, K. Martel, C. Masciovecchio, J. F. Ribois,
Gruocco, and H. Sinn, J. Synchrotron Radiat.3, 62 ~1996!; C.
Masciovecchio, U. Bergmann, M. Krisch, G. Ruocco, F. Se
and R. Verbeni, Nucl. Instrum. Methods Phys. Res. B111, 181
~1996!.

@12# C. Y. Liao, F. Sciortino, and S. H. Chen, Phys. Rev. E60,
6776 ~1999!.

@13# F. Sciortino, L. Fabbian, S. H. Chen, and P. Tartaglia, Ph
Rev. E56, 5397~1997!.

@14# P. M. Furtado, G. F. Mazenko, and S. Yip, Phys. Rev. A13,
1641 ~1976!.
.

,

-
.

i,

-
t.

.
.

,

.

@15# J. P. Boon and S. Yip,Molecular Hydrodynamics~McGraw-
Hill, New York, 1980!.

@16# S. Yip, W. E. Alley, and B. J. Alder, J. Stat. Phys.27, 201
~1982!.

@17# K. Toukan, S. H. Chen, and S. Yip, Mol. Phys.55, 1421
~1985!.

@18# J. M. Zanotti, M. C. Bellissent-Funel, and S. H. Chen, Ph
Rev. E59, 3084~1999!.

@19# B. Kamgar-Parsi, E. G. D. Cohen, and I. M. de Schepp
Phys. Rev. A35, 4781~1987!.

@20# W. E. Alley, and B. J. Alder, Phys. Rev. A27, 3158~1983!.
@21# E. G. D. Cohen, I. M. de Schepper, and M. J. Zuilhof, Phys

B 127, 282 ~1984!.
@22# W. Montfrooij, E. C. Svensson, I. M. de Schepper, and E.

D. Cohen, J. Low Temp. Phys.105, 149 ~1996!.
@23# R. Zwanzig, inLectures in Theoretical Physics, edited by W.

Brittin ~Wiley-Interscience, New York, 1961!, Vol. 3, pp.
106–141.

@24# H. Mori, Prog. Theor. Phys.33, 423 ~1965!.
@25# E. D. G. Cohen, and I. M. de Schepper, Nuovo Cimento12,

521 ~1990!.
@26# U. Bafile, P. Verkerk, F. Barocchi, L. A. de Graaf, J.-B. Suc

and H. Mutka, Phys. Rev. Lett.65, 2394~1990!.
@27# U. Balucani, and M. Zoppi,Dynamics of the Liquid State

~Clarendon, Oxford, 1994!.
@28# I. M. de Schepper~private communication!.
@29# J. Rouch, C. C. Lai, and S. H. Chen, J. Chem. Phys.66, 5031

~1977!.
@30# J. Rouch, C. C. Lai, and S. H. Chen, J. Chem. Phys.65, 4016

~1976!.
@31# W. W. A. Kruse, Properties of Water and Steam~Springer-

Verlag, Berlin, 1998!.


